TreeLink Clustering Algorithm

The proposed algorithm uses the distribution of branchlengths (or evolutionary
distance) to divide and cluster clades to define groups into statistically significant
subsets of the tree.

The detection phase
Initially the algorithm detects the tree topology based on the diversification type:

Late diversification or early diversification, in the earlier case, the algorithm will
include the leafs in the parameters, and in the later case it will not. A mixed model can
be used in which case it will assess each clade and classify it for diversification type.
Comparing the averages of the leaf distances with the internal node distances makes
the detection.

The order phase

The algorithm navigates the tree saving all the node distances of the tree in an
associative array with the id of the node that contains it. After the search is done it
takes the evolutionary distance as the dissimilarity measure and orders all the
individual evolutionary distances based on their dissimilarity magnitude from higher
to lower.

Step1: After the ordering is done it searches for changes in dissimilarity gained in step
processes, defined as the local minima of the ordered distribution of the distances,
and will save them into another variable. The accumulated dissimilarity gained by
selecting that cut value is also stored.

Step2: After the local optimums are saved with the accumulated dissimilarity, the
selection of the optimum is done. Better selections of the optimum include the value of
the optimum (or the change in dissimilarity) and the accumulated dissimilarity into
the analysis.

Step3: A recursive function navigates the tree and assigns a cluster number to the
nodes that fulfill the condition of having a larger evolutionary distance than the
optimum selected.

The output phase

After the assignment to clusters is done, the tree hierarchical structure is flattened
into and array of objects with the node names and the cluster number.

Mathematical Definitions

Definition. A graph G is pair G = (V, E) where V =V (G) is a set of vertices or nodes, and
E =E(G) is a set of edges. Each edge e € E is a two-element set e = {v1, v2} of vertices

vl,v2 € V.
Definition. A tree T = (V, E) is a connected graph with no cycles.

Definition. A metric tree (T, w) is a rooted or unrooted tree T together with a function
w : E(T) = R 20 assigning non-negative numbers to edges. We call w(e) the length or
weight of the edge e.

Definition. Edge Space E(G). Is the vector space freely generated by the edge set E. The
dimension of the edge space is the number of edges or card(E).

Definition A Cut C= (S,T) is a partition of V of graph G=(V,E) into two subsets, S and T.

Dissimilarity measure:

Let W ={w(e1), w(ez), ..., w(en) } be the collection of measurements that
quantitatively separate two pairs of edges.

Then we note the total dissimilarity contained in the edges of the metric tree as the
sum:

Tdis=2j21 w(ej)

Where n= card(T)

And the ordered set B of lengths of edges is defined as the sequence:
B={b1,b2,.,bn}={w(e) € T: w(e)n < w(e)n-1:n=1,2,...,card(T)}

And the dissimilarity explained by the number of edges as the partial sum of the
sequence B:
", bj/ Tdis

j=l

Where m<card(T).

Optimums

In order to explain most of the dissimilarity contained in the graph in a limited
number of subsets, changes in dissimilarity explained by the current value in the
ordered set of B are calculated.

where

x € X : x=argmin f(b)

bEB’

Where X is the set of optimum values that cut the tree for a portion of dissimilarity
explained with a given number of subsets of T.

Cuts C
C={S1,.-,Sn: w(en-1)= x = argmin f(b) }

Where Cis the set of clusters or subsets S for n edges in the Metric Tree T.
Pseudocode

Tree to array

Function flatten(tree)
Array|[tree.node.id]=tree.node.branchlength
for (i=0; i<tree.children.length;i++)
flatten(tree.children[i])
end for
end function

Sort Lengths

for(i=0; i<Array.lenght; i++) Put the next smallest element in location A[i];

Optimum

function min(A)

for(i=0; i<A.lenght; i++)
if(A[i]<A[i-1] and A[i]=A[i+1])
return A[i]
end if

end for

end function

Make Cuts

Function cut(tree,optimum,array)

cluster = 0;
Function navigatetree(subtree, optimum,cluster)
if (node.length >= optimum)
cluster+=1

array[subtree.node.id]=cluster;
for (i=0; i<subtree.children.length;i++)
navigatetree(subtree.children|[i], optimum, cluster)
end for
end if
else
array[subtree.node.id]=cluster;
for (i=0; i<subtree.children.length;i++)
navigatetree(subtree.children][i], optimum, cluster)
end for
end else
end function
navigatetree(tree, optimum, cluster);
return tree;
end function

